Stationary solutions of continuous and discontinuous neural field equations
نویسندگان
چکیده
منابع مشابه
existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولStability of the stationary solutions of neural field equations with propagation delays
In this paper, we consider neural field equations with space-dependent delays. Neural fields are continuous assemblies of mesoscopic models arising when modeling macroscopic parts of the brain. They are modeled by nonlinear integro-differential equations. We rigorously prove, for the first time to our knowledge, sufficient conditions for the stability of their stationary solutions. We use two m...
متن کاملExistence and properties of solutions for neural field equations
The first goal of this work is to study solvability of the neural field equation τ ∂u(x, t) ∂t − u(x, t) = ∫ Rm w(x, y)f(u(y, t)) dy, x ∈ R, t > 0, which is an integro-differential equation in m+1 dimensions. In particular, we show the existence of global solutions for smooth activation functions f with values in [0, 1] and L kernels w via the Banach fixpoint theorem. For a Heaviside type activ...
متن کاملStationary and Periodic Solutions of Differential Equations
A stochastic process ξ(t) = ξ(t,ω) (−∞ < t < ∞) with values in R is said to be stationary (in the strict sense) if for every finite sequence of numbers t1, . . . , tn the joint distribution of the random variables ξ(t1 + h), . . . , ξ(tn + h) is independent of h. If we replace the arbitrary number h by a multiple of a fixed number θ , h= kθ (k =±1,±2, . . . ), we get the definition of a periodi...
متن کاملViscosity solutions of discontinuous Hamilton–Jacobi equations
We define viscosity solutions for the Hamilton–Jacobi equation φt = v(x, t)H(∇φ) in RN × (0,∞) where v is positive and bounded measurable and H is non-negative and Lipschitz continuous. Under certain assumptions, we establish the existence and uniqueness of Lipschitz continuous viscosity solutions. The uniqueness result holds in particular for those v which are independent of t and piecewise co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2016
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2016.06.021